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Zeta functions on the non-positive real axis 
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Received 6 June 1988, in final form 18 October 1988 

Abstract. Physical applications of C-function regularisation require explicit knowledge of 
the relevant function somewhere on the non-positive real axis. We present a simple and 
very general method for evaluating 5 functions Z ( s )  = E, A;‘ at certain discrete points 
s = -np  0 ,  n = 0, 1,2, .  . . , on this axis, where p is defined by the condition that A P ,  be a 
polynomial in all summation indices. Z ( - n p )  is shown to be a polynomial in the various 
parameters on which the ‘eigenvalues’ A, depend. The polynomials Z ( - n p )  generalise 
the Bernoulli polynomials and possess interesting properties. These statements apply to 
multidimensional (e.g. Epstein and other) 5 functions, as well as to single-sum functions. 
Physical applications in quantum field theory are briefly indicated. 

Introduction 

Theoretical physics increasingly employs 3 functions to assign well defined finite values 
to divergent series which are understood to represent physical quantities. As a rule, 
this involves evaluation of the 5 function and/or its derivative at some point on the 
non-positive real axis, well to the left of the 3 function’s abcissa of convergence. This 
analytic continuation procedure is known as ‘3-function regularisation’. To convey 
the idea, we briefly describe two physical problems in which 3-function regularisation 
is often employed. 

Consider first the zero-point energy of a system of quantum oscillators with discrete 
frequencies {wm}. Tnis could be the vacuum energy of a field theory constrained by 
boundaries or by non-trivial topology (so that the frequencies w ,  are discrete). The 
zero-point energy of the system is (see, e.g., [ l ] )  

The series (1.2) converges only to the right of the abcissa of convergence for this series, 
say Re s = B > 0. But ‘8 can be identified as the value at s = -1 of the analytic function 
defined by the series (1.2). The regularisation process works as long as J(sl{wm}) is 
meromorphic, with no pole at s = -1. Then the formally divergent series (1.1) is 
assigned the finite value l(-ll{wm}). 

A more common use of 5 functions in field theory is the calculation of functional 
determinants [2-41 or of one-loop effective potentials (see, e.g. [5,6]). Given an elliptic 
operator A (typically a Laplacian or some generalisation thereof) the functional 
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determinant of A can be expressed as 

In det A = -Z’(O) + Z(0) In p (1.3) 

Here the A, are the positive eigenvalues of A, assumed to be discrete because of some 
compactification of spacetime. (For flat spacetime and a continuous set of eigenvalues, 
Z ( s )  becomes a distribution.) The scale parameter p has the dimension of A. A true 
5 function Z(s) has no pole at s = 0, and so (1.3) assigns a finite value to In det A. 
This procedure involves not only the 5 function Z(s), but also its derivative 

z y s ) = - Z l n ( ? ) ( y  m 

evaluated at s = 0. Z ’ ( s )  is not a 5 function, but something more complicated-a 
Dirichlet series. In general, Dirichlet series D( s) may be characterised as ‘modified 
5 functions’: 

which have additional factors f, inserted under the sum. (fm = -In A m  in ( l S ) . )  As 
a rule, Dirichlet series have different properties than their ‘parent’ 6 function Z (  s). 
But they still define meromorphic functions and can be used for regularisation much 
like 5 functions. 

This paper presents a simple method for the evaluation of very general 5 functions 
and their associated Dirichlet series at an infinite set of discrete points on the non- 
positive real axis. Notationally we denote these points by 

n = 0 , 1 , 2 , .  . . . (1.7) n - -  ..- np 

Here p is the smallest positive number for which AP, is a polynomial in each of its 
summation indices. (Note that multiple sums may be involved.) Then A:, n = 
0 , 1 , 2 ,  . . . , is also a polynomial in the summation indices. This condition is essential 
for the success of our method. All of the points (1.7) lie to the left of the abcissa of 
convergence of any 5 function, and normally one would have to perform explicit 
analytic continuation to reach them. A major advantage of our method is that one 
does not have to solve the full analytic continuation problem to evaluate the 5 function 
at these particular points. Indeed, very simple manipulations are sufficient, even for 
very complicated 5 functions. The main shortcoming of our method is its restrictiveness. 
Away from the points (1.7) it ceases to apply in the simple version presented here. 

An aspect of considerable importance is that the value obtained for Z( - n p )  = Z, A 2 
is a polynomial in all of the parameters on which the eigenvalues A, depend. Several 
examples of this are known in the classical literature on 5 functions. We shall establish 
that this is a very general phenomenon-indeed, one of the defining features of 5 
functions. 

The two preceding paragraphs apply to multiple-sum 5 functions at a very general 
level, as well as to single-sum 4‘ functions. Our procedure in this paper will be to 
introduce our method with the help of examples for which basically everything is 
known, and then generalise. Thus we begin with single-sum 5 functions in 0 2 and 
then proceed to multiple-sum ones in 9 3.  
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Actual calculations are done as follows. Under the sum in Z(-np) = Z, A:, A: 
is, by definition, a polynomial in all summation indices. For example, in the single-sum 
case one has 

(1.8) A 2 = comDo + c1 mol + . , . + cNm a,v f f k  3 0. 

Our observation in this paper is that, because there are a finite number of terms in 
A:, the sum over m can be evaluated explicitly: 

2 ~ z = c ~ 5 ( - a , ) + .  . .+c~(-a , )+{extraterms)  
m = l  

where 5(s)  = 2;" m-' is the Riemann 5 function [7,8]. Essentially, one is commuting 
a divergent infinite sum Z, through a finite series, and this is manageable. Some extra 
terms may be generated in the process (because Z, is divergent). The only real difficulty 
is to reliably calculate these extra terms. We show precisely how to do this. The 
multidimensional case is a straightforward extension of what one does in single-sum 
problems. 

Usually the numbers f f k  in (1.8) and (1.9) are integers, and thus one obtains a 
formula expressing the more complicated 5 function Z(-np) in terms of well known 
special values of the Riemann 5 function [7,8]: 

B,+1 J(-n) = -- 
n + l  

n =0 ,1 ,2 , .  . . 
(1.10) 

= O  n=2 ,4 ,6 ,  . . . .  
A great many 5 functions can be dealt with in this way. In particular, we will show 
that this is true of the Epstein 4' functions [9], which have the important properties: 

m 

[ ~ , ( m , + g ~ ) ~ + .  . ,+~ , (m,+g , )~ ] -~  exp[i(mlhl+. . .+m,h,)] 
ma=-m 

= O  at s = -1, -2, - 3 , .  . . (1 . l la )  

= O  

= -exp[ -i( g, hl  + . . . + gNhN)] 

at s = 0 if not all the g, are integers (1.1 1 b )  

at s = O  if all the g, are 
integers (in which 
case the term mi = 
-g, is excluded 
from the sum on 
the left-hand side). (l.llc) 

Epstein had to solve the full analytic continuation problem to obtain (1.lla-c). We 
will rederive these same results much more simply by expressing the Epstein 5 functions 
at s =0, -1, -2,. . . , in terms of the special values (1.10) of [(s). 

Epstein 5 functions turn up frequently in quantum field theory because they are 
constructed from eigenvalues quadratic in the summation indices. These are the 
eigenvalues of quadratic Lagrangian kinetic terms A = 8: + . . . + 8% in momentum space, 
for theories defined in an N-dimensional box with periodic boundary conditions. We 
shall obtain, in addition to (1.lla-c), corresponding results for much more general 5 
functions than Epstein's. These include, for example, the 5 functions associated with 
Lagrangian kinetic terms involving arbitrary powers of the derivatives. These more 
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general 5 functions are what one would use to calculate effective potentials for theories 
with arbitrary higher-derivative kinetic terms. The author is not aware of any results 
whatever on such { functions or effective potentials. 

2. Single-sum 6 functions 

One can express [ 5 , 6 ,  10-131 even very complicated single-sum { functions in terms 
of the Riemann 5 function {(s). One uses the binomial expansion to do this. The 
result is an explicit formula, giving the single-sum 5 function everywhere in the s plane. 
In this section, we begin with simple examples, showing how a much abbreviated 
version of this general procedure can be used at those points (1.7) on the non-positive 
axis which were defined in the introduction. The only subtle aspect of the method 
arises from the commutation of sums. This will be carefully explained with the help 
of known 5 functions in § 2.1. (The commutation problem is very important, and its 
clarification is the reason why the known material in § 2.1 is included.) Thus equipped, 
it will be quite simple to obtain new results of a very general nature on single-sum { 
functions (in 0 2.2) and multidimensional { functions ( 0  3). 

2.1. Hurwitz and related 5 functions 

The Hurwitz 5 function is [7, 101 
00 

~ ( s , a ) =  ( n + a ) - s  R e s > ]  
n = O  

m 

= a - ’ +  k = O  ( i s ) a k C ( s + k )  all s, la1 < 1.  

Here, if la1 < 1, the binomial series Z k  converges. For Re s > 1, so does Z,. With both 
sums convergent, Z m  can be commuted through x k  and evaluated as the Riemann 5 
functions C(s + k). The resulting exact series is well defined for all s, so the final line 
in (2.1) explicitly continues 5(s, a )  to all s. 

When s = -Lis a non-positive integer, the final line in (2.1) becomes [ 101 a Bernoulli 
polynomial [7,8] 

&+I ( a  1 {(-L, a)=-- 
L + l  

= a L +  k = O  f ( k ) a k J ( k -  L ) +  L=O, 1 , 2 , . .  . .  
Here the curly bracket term is the k = L S  1 term in (2.1). This term contributes because 
the pole in L(1)  cancels the zero in the binomial coefficient (=t1). Explicitly, for 
s = - L +  E, k = L+ 1: 

a L+ 1 
= -- 

L + l  
where the limit E + 0 is understood. 
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Suppose that one did not know (2.1) and needed to evaluate l ( -L ,  a ) .  Then one 
would write 

= f (3 a k l ( k  - L) +{extra terms}. (2.4) 
k=O 

Here the curly bracket { } represents all extra terms generated by the commutation of 
the divergent sum Z, through the finite sum &. In general, there may arise corrections 
to any naive manipulation of series when divergent series are involved [lo, 12-15]. 
The author finds it extremely convenient to use the symbol { } to represent and to identify 
these corrections, as in (2.4) above and in many other formulae to follow in this paper. 
Apriori one does not know what this correction is and it may seem a bit unconventional 
to employ a symbol for something as loosely defined as this. In practice, however, { } 
is precisely calculable for a very broad range of problems [lo, 12-15]. As long as one 
is confident these corrections can be routinely evaluated, the symbol { } may be regarded 
as representing something well defined. This notation only ceases to be meaningful 
when the corrections it represents cannot be calculated. 

There is a systematic way to find extra terms (for arbitrary s) using Cauchy's 
theorem [13-151. We do not want to reiterate the Cauchy method here, but rather to 
present a simpler alternative which can be used in problems like (2.4). In the latter 
formula, we pick up the extra term simply by extending the finite sum over k to include 
the term ic = L+ 1, which contains l ( 1 ) .  This triggers the mechanism (2.3), and one 
ends up with the same extra term as before. 

In more general problems we have, in place of ( m  + a)" in (2.4). 

leading to 

m 5 A:'= c k l ( - a k ) + { } *  (2.6) 
m = l  k=O 

Here the extra term can be found by extending the finite sum over k to any integral 
value of k for which (Yk = -1 ( (Yk  being regarded as some known function of k )  to 
pick up the contributions from terms containing l ( 1 ) .  If there are no such terms, 
{ } = 0. This is the essence of our method. 

As an illustration, consider the 5 function: 

If a # l/integer, then (Y ( k  - L) = 1 is not possible and there can be no extra term. Thus 

m = l  k=O 

This polynomial is associated with the 5 function (2.7) in the same way that the 
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Bernoulli polynomial is associated with l(s, a ) ,  and it generalises the Bernoulli poly- 
nomials. (The polynomial (2.8) satisfies identities quite similar to those satisfied by 
the Bernoulli polynomials.) 

Three variations of the preceding analysis deserve mention. The first is the insertion 
of additional powers of n under the sum in (2.1) and (2.4): 

n f, =o nN(n+a)-”=6NOa-”+ k=O CO ( i s ) a k l ( s - N + k )  (2.9) 

which leads to the special values 

(2.10) 

The extra term in (2.10) is the k = N +  L+ 1 term of (2.9). Generally, one can insert 
powers of the summation index under the sum with relative ease, as this example 
illustrates. 

The second variation is the insertion of alternating signs under the sum: 

(2.11) 

where 

CO 

d s ) =  ( - l )m+lm-r =(1-21-”))5(s) (2.12) 
m = l  

is the alternating-sign Riemann 5 function. Because r) (s) has no pole for finite s, there 
are no extra terms generated by series commutation in the alternating-sign case [13-151. 
Thus 

(2.13) 
k=O 

CO 

C ( - l )n+lnN( n + - S N o a L  + 
n =o 

For N =0, the right-hand side of (2.13) equals -EL(a)/2 [lo] where E L ( a )  is the Lth 
Euler polynomial [7]. This is the alternating-sign equivalent of (2.2), defining the 
Bernoulli polynomials. 

Finally, let us consider the Lerch function [7], obtained by inserting a factor Z“ 

under the sum in (2.1); 

“ 1  CO 

@(s,z ,a )=  ~ “ ( n + a ) - ” = z - ~  , ( lnz)kl(s-k,a)  
n =O k=O k .  

+{z-ar( i  -s)(-ln z)”-’} Iln zI c 21r. (2.14) 
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This function has poles at all positive integers s = 1,2,3,  . , . , and is not a 5 function, 
but rather a Dirichlet series. The second equality is obtained by expanding the exponent 
in zn = z - ~  exp[( n + a )  In z)] and commuting sums, with an extra term being generated 
as shown. 

If we did not know (2.14), we could still evaluate the numerical sum at the point 
s = - L, L = 1,2,3,  . . . : 

L =  1,2,3, .  . .; la1 < 1; Iln zI <2v.  (2.15) 

Here the extra term is the k = - (L+ 1) term and the result agrees with (2.14). So our 
device for finding extra terms again works; but unlike the previous examples, the sum 
x k  which gets extended here is an injnite sum over k = 0,1,2,  . . . (the extension being 
into the negative integers). This example also shows that the insertion of a power 
factor Z" under the sum of the Hurwitz 5 function changes the Bernoulli polynomial 
result (2.2) into an infinite series with Bernoulli polynomial coefficients. This type of 
modification in the value of a 5 function at s = -np, from polynomial to transcendental 
function, when extra functions are inserted under the sum, is typical of Dirichlet series. 
The factor Z" is representative of functions f ( n )  of n, having infinite radius of 
convergence, which can be inserted under the sum, to convert 5 functions into Dirichlet 
series. 

The other variations considered before, namely (i) n + a + n" + a, (ii) insertion of 
n N  under the sum and (iii) insertion of alternating sign under the sum, can all be done 
with (2.14) and (2.15). New (or at any rate untabulated) results are readily obtained. 
However, Lerch's function is not our main focus here, so we proceed to more general 
matters. 

2.2. General single-sum 5 functions 

The 5 function 

m 
(a,m*l+. . .+aNmaN)-' a,> a*>. . .> aN > 0 (2.16) 

m = l  

could be associated with an operator of order a', in which the lower-order terms 
represent 'perturbations' of the leading term. Generally it is possible to use the binomial 
expansion repeatedly-or the multinomial series once-to find an exact series for the 
5 function (2.16) in powers of the parameters ai. (One has to exercise care not to use 
the binomial series outside its radius of convergence. If one does, the resulting power 
series will be asymptotic. In other respects the procedure is straightforward.) One 
can then set s = -L and obtain the polynomial value of the 5 function at these points. 
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(Note that, at these points, the asymptotic series resulting from misuse of the binomial 
expansion will yield the same polynomial result.) 

A more direct way to evaluate (2.16) at s = -L is 

( a l m a l + .  . . + a N m a N ) "  

00 

m = l  

00 

= 

= C (L lk l .  . . kN)af l . .  . a$l ( -c~lk1-- .  . .-aNkN)+{ } (2.17) 

where the multinomial series is used and (Llk, , . . kN) are the multinomial coefficients. 
In those cases where { }=O, (2.17) is the final result. This extremely simple 

derivation works as well as it does because one is computing a polynomial, and not 
an infinite series. When the multinomial series is finite, there are no convergence 
problems arising from it-the relative size of terms in ( a l m a l + .  . .)" is irrelevant. Away 
from the points s = -L, the multinomial series becomes infinite and its convergence 
becomes a major consideration. 

The conditions under which there will be an extra term in (2.17) have been spelled 
out previously. If it is possible to extend the sum over kl , k2, . . . , kN to other integer 
values, such that S ( l )  can be made to appear in (2.17), then such terms will contribute 
to { }, If this is not possible, then { } = 0 in (2.17). 

Variations of the problem (2.17) along the lines considered in 0 2.1 are easy to deal 
with. 

(i) Insertion of a power m p  under the sum in (2.17) merely shifts the argument of 
the Riemann 5 function in the answer by -p,  much as in (2.10). 

(ii) Insertion of the alternating-sign factor (-l)m+l under the sum in (2.17) causes 
5 ( - a l k l - .  . .-aNkN) to be replaced by v( -a ,k l - .  . . - a N k N ) .  As ~ ( s )  has no pole 
for finite s, there will be no extra term. 

( L l k l . .  . kN)afl . .  . a $ m a l k l + . . . + a d N  

m = l  k l+  ...+ k N = L  

k ,+  ...+ k N = L  

(iii) Much as in (2.15) 

where (2.17) and comment (i) evaluate I;, on the right. 

3. Multidimensional 4 functions 

The binomial or multinomial series makes it relatively easy to compute single-sum 4' 
functions in terms of the Riemann 5 function, for arbitrary s. This approach does not 
work for multidimensional 5 functions, because the relative size of different summation 
indices is completely arbitrary. Hence there is no systematic way to use the binomial 
series within its radius of convergence, which parallels, for example, (2.1). However, 
at those points (1.7) along the real axis which are singled out in the present paper, 
one is dealing with $finite, not infinite, binomial series, and the relative size of different 
summation indices is irrelevant. This makes it easy to extend the considerations in 0 2 
to the multidimensional case. Indeed, our method is much more powerful (relative to 
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what one can achieve for arbitrary s) in multidimensional problems than it is in the 
single-sum case. 

In this section, we consider three categories of multiple-sum f functions. 
( a )  Linear f functions, for which many exact results are known [ 11,161, and which 

therefore provide a test of our procedure. 
( b )  Epstein or quadratic f functions [9]. These are rather trivial to evaluate at the 

non-positive integers by our method. 
(c) Zeta functions involving arbitrary powers of the various summation indices. 

Such f functions have not been studied in any context to the author’s knowledge. We 
shall obtain quite explicit results for them. 

3.1. Linear f functions 

Consider the simplest linear f function [ 111 
m 

( m  + n ) - s  = f ( s  - 1)  - f ( s ) .  
m,n=l  

Evaluating the left-hand side of (3 .1)  at s = - ( 2 N + 1 )  yields 

(3.1) 

00 

( m + n ) 2 N + ’ =  
m,n = 1 k=O 

=25(0)5( -2N-1)=-5( -2N- l )  (3.2) 
in agreement with the right-hand side of (3 .1) .  Note that there is no extra term: 
extending x k  to k = 2 N  +2, to pick up the f ( 1 )  term, yields zero. This is because f (1)  
is multiplied by two zeros: a vanishing binomial coefficient and f ( - 2 N  -2) .  

Evaluating the sum (3.1) at s = - 2 N  gives 
00 

( m  + n ) 2 N  = f ( - 2 N  - 1 )  
m,n = 1 

2 
k = l  

(3.3) 

Here all the terms with odd k contribute. Also, there is an extra term coming from 
k = -1  and k = 2 N +  1, as shown. The right-hand side of (3.3) must sum to f ( - 2 N  - 1). 
One verifies that it does. 

Consider another known result [ 161: 
00 

( m  + 2 n ) - s  = i f ( s  - 1)  - i f ( s ) ( l + 2 - ” ) .  (3.4) 
m , n = l  

For s = - ( 2 N +  l ) ,  one readily verifies that the left-hand side agrees with the right, 
and that there is no extra term. For s = - 2 N :  

( m + 2 r 1 ) ’ ~ = ; 5 ( - 2 N - l )  
00 

m,n=l  

2N-1 2 N  = 
k = l  ( )2’”-ii(-k){(k-2N) 

1 + { -- 2N+1(22N+1+t ) t ( -2N-1)  (3.5) 

Again the extra term comes from k =  -1 and k = 2 N + 1 .  It is not difficult to check 
that (3.5) is indeed an identity. 
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Proceeding now to the general case, we have 

2 ( & m , + .  
m , = l  

= (Llk,.  . . kN)U:l.. . U$l(-kl).  . . l ( -kN)+{  } (3.6) 
kl+ ...+ k N =  L 

where the procedure to follow in calculating the extra term is clear. Exact results on 
linear 5 functions (for arbitrary s) much more general than (3.1) and (3.4) are available 
[16], and elaborate examples could be provided. We state without proof that the usual 
variations, of inserting powers of mi and/or alternating signs under the sum in (3.6), 
are readily accomplished. 

3.2. Epstein 5 functions 

The simplest Epstein t function [9] is [17] 
W 

2' (m2+ n2)-' =45( s )p ( s )  
m,n=-m 

m 
p ( s ) =  (-1)"(2n+l)-'  

n=O 

(3.7) 

(3.8) 

where the prime means m = n = 0 is excluded from the sum. In very special cases, 
such as this one, Epstein 4' functions can be simply expressed in terms of l ( s )  and 
other one-dimensional (ID) series like (3.8). A compendium of such results, with 
earlier references, can be found in [18]. Aside from these special cases, one has no 
idea at present how to express general Epstein 5 functions in terms of I D  sums for 
arbitrary s. However, at the negative integers, this is easy to do, as was first pointed 
out in [19]. 

The main points are well illustrated by the 5 function (3.7). Evaluating the left-hand 
series at s = -L gives 

W cc ( :)m2kn2L-2k 
E' (m2+n2)L= E' 

m,n=-m m,n=-W k=O 

= 4  k = O  ( : ) { ( - 2 k ) l ( 2 k - 2 L ) + 4 l ( - 2 L )  

= O  L = l , 2 , 3  ,.... (3.9) 
Every term in the final result vanishes. There is no extra term, because there is no 
way to pick up a l( 1) contribution-all Riemann 6 functions have arguments which 
are even integers. Equation (3.9) agrees with (3.7), because l ( -L)  = 0 for even L while 
p(-L) = 0 for odd L. Some more information on p ( s )  is 

P(-L) = ; E ~  L=O, 1,2 ,  * .  . 
= O  L = l , 3 ,  5 , .  . . (3.10) 

where the EL are the Euler numbers [8]. The point s = 0 is also easy to deal with: 

m,n=-m m,n=l  m = l  

=4l(O)l(O)+4l(O)= -1 

since l ( 0 )  = -$, in agreement with ( 1 . 1 1 ~ )  and (3.7). 

(3.11) 
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As a further illustration of (1.11) consider the following double series, with a, b 
not both integers and L = 0,1,2, . . .: 

m 

[ ( m  + a)'+ ( n  + 6)*IL exp[i(mc+ nd)] 
m,n=-m 

L 
= f exp[i(mc+nd)l k=O c ( ; ) ( m + a ) ' k ( n + b ) 2 L - 2 k  

m,n=-m 

b2L-2k-q f mpnq exp[i(mc+ nd)] 
m,n=-m 

= O  a, 6 not both integers; L = 0,1,2,. . . . 
This vanishing result is assured by 

for all integers p, q 3 0: 

~ 

m,n=-m 

m , n = l  

= 0. 

1 

4 cos( mc) cos( nd) 
4i cos( mc)  sin( nd) 

m2M 2 N  

,,,2M ZN-1 

,,,ZM-l 2N-1 

n 
n 

- n 4 sin( mc) sin( nd) 
m2"2 cos(mc)[2 cos(nd)+S,,] 

2i sin( mc)[2 cos( nd) + S,,] 
[2 cos(mc)+Sml][2 cos(nd)+S,,] 

,,,2M-1 

Here M, N 2 1 are integers and we use 
mZM cos(mx) 

m = l  

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The latter formulae are derived in detail in [13]. Both (3.14) and (3.15) are special 
values of Dirichlet series defined throughout the s plane. ([13] is a compendium of 
a large number of results on Dirichlet series.) 

When a, 6 are both integers, the term m = -a, n = -6 on the left-hand side vanishes 
for L >  0, while for L = 0 it is non-vanishing and equal to exp[i( -ac - bd]). This term 
is simply moved to the right-hand side to obtain (1.11~). 
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The calculation summarised by (3.12) can obviously be generalised to N dimensions. 

f m f n , . . . m ~ e x p [ i ( m , h , + . . . + m , h , ) ] = ~  (3.16) 

where the Mi are non-negative integers. We feel that further discussion of this point 
is unnecessary, and that we have given an essentially complete derivation of (1.11) 
which is completely different from Epstein's. An advantage of the new derivation is 
its flexibility. It can be used to extend ( 1 . 1 1 )  in directions where Epstein's 5 function 
arguments cannot readily follow. 

Consider the insertion of any positive integral powers of m and n under the sum 
in (3.12). This merely shifts m p  and n4  under the sum Z m n  in the second equality of 
(3.12) to higher powers, and the result remains zero because of (3.13). The same thing 
is true for any dimension N because of (3.16). (Note that alternating sign has already 
been incorporated into (1.1 1 )  in the phase factor and need not be considered separately.) 

Equation (3.13) is readily extended to N dimensions: 

mz=-a2 

A slightly different calculation is 

f mMnN(am2+ bn2)L 
m , n = l  

= k = o  ( L ) a k b L - k l ( - 2 k - M ) 5 ( 2 k - 2 L - N ) + {  k } 

= O  unless both M, N are odd. (3.17) 
Here each term vanishes separately, including { }, unless both M and N are odd 
integers. When My N are odd, the terms in Zk are non-zero, as is the extra term coming 
from k = L+ ( N  + 1)/2 and k = - (M + 1)/2: 

{(-') 2[ L + (M + 1)/2] ! 
(M+1)/2 L![(M - 11/21! a - ( M + 1 ) / 2 b L + ( M + 1 ) / 2  

x 5 ( - M - N - l - 2 L ) + M o N y a o b  (3.18) 

When the sum in (3.17) is extended to --oc< my n 6 M, the result trivially vanishes, as 
it should. 

3.3. More general 5 functions 

The preceding study of linear and Epstein 5 functions reveals that far more general 
multidimensional 5 functions yield to the same method. For example, as a generalisa- 
tion of (3.6) we have 
a2 

C (almyl+. . .+a,m;;")" 
m , = l  

= ( L l k l . .  . kN)a:l..  . uk 
kl+ ...+ kN = L 

x l ( - a , k , )  * * l ( - - ( y N k N ) + {  1 ai > 0. (3.19) 
Suppose that the ai are even integers and L > 0. Then every term in the multinomial 

series (3.19) contains one or more factors of 5(-2n) = 0, and consequently vanishes. 
Moreover, there is no extra term. Thus the special value (3.19) is zero for L = 1,2 ,3 ,  . . . , 
and ai = 2Mi, much as for an Epstein 5 function. 
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When one or more of the ai = 1, it becomes possible to pick up [( 1)  contributions 
to the extra term, as we have seen in the case of linear 5 functions. For brevity, we 
omit a discussion of examples of this type, as things are much as in the linear case. 

Suppose that ai > 1. Then in (3.19) it is impossible to extend the multinomial sum 
over the integers and find [( 1) terms, so { } = 0. Of coursd, the individual terms of the 
multinomial series do not vanish, and in general the special value (3.19) is non-zero. 

4. Derivatives of t functions 

Derivatives of C functions are no longer [ functions, but rather Dirichlet series with 
logarithmic factors under the sum: 

($ ) 'Z (S)  = (-1)' (In A,)"A;'. 
m 

(4.1) 

The method of this paper can be used to evaluate such series at the same points (1.7) 
at which Z ( s )  is easily evaluated. This may not seem surprising, but neither is it 
entirely obvious. To fully describe the details would require another paper. Here we 
merely sketch the procedure, using single-sum [ functions as an example. In general, 
the derivative (4.1) evaluated at s = -np is not a polynomial in the parameters of A,, 
as is Z (  -np), but rather a transcendental function in these parameters. 

Because the series (4.1) is more difficult to evaluate than the undifferentiated series 
Z(s), it becomes all the more important to study known examples. For this reason 
we return to the Hurwitz J function. From (2.1) one finds, after some work [lo], 

L'(-L, a )  - a L  In a 

2 

L!(k - L -  I)! 
k! 

I4 < 1 (4.2) 
where CL = 1 + $+ . . . + 1/ L and y is the Euler constant. Equation (4.2) is transcenden- 
tal, as promised. The extra term has been split into two parts: { }1 originates from the 
pole in [(s) at s = 1, as did all the extra terms in previous sections. { }z arises from 
the pole in $( k - L )  - I,!I( -L)  for k 3 L+ 2, and not from the pole in 5(s). Our task 
now is to obtain (4.2) without the help of (2.1). 

From the definition of [(s, a )  we have 

a '  
k=O r = l  r 

OD 

' = (L)ak{['(k-L)+ (-1)'-[(k+r-L) 
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where the extra terms {}1,2 will be calculated shortly. Note that the expansion 
l n ( l + a / m ) = a / m - ( ~ / m ) ~ / 2 +  . . .  has been used and 

W 

l ' ( s )  = - In m / m S  
m = l  

is the derivative of l(s). The finite sums Zk=o in (4.2) and (4.3) are seen to be identical, 
because of the identity 

N-1 1 

kzO r p = o  s + p  
r z l  

k + r = N  

What remains is to show that the extra terms { }1,2 can be routinely evaluated. To 
find { (which is associated with the pole in l(s) at s = 1 )  we set s = - L +  E rather 
than s =  - L  in (4.3). Then, to pick up the l(1) contribution, we set k =  L + 1  in the 
term containing l'( k - L + E ) ,  and k + r = L + 1 in the term containing l( k + r - L +  E ) .  

This gives 

L-E 

1 = ( L-E )a'+'{ ( - i+cons tan t+O(E)  
L +  1 E 2  

+ -+ y + O(E) )  (1 - c, + O ( E ) ) }  (: E 

which agrees with (4.2). Note that (4.4) was used to obtain the first equality. As 
always, the limit E + 0 is understood. 

The other extra term { }* is not associated with the pole in {(s) at s = 1 .  Let us 
replace s = - L  by s = - L +  E and write the double sum Z k r  in (4.3) as 

a k + r ( - l ) r - l ( k +  1 r -  L +  E )  

r 

1 
n 

= a"J(n  - L +  E )  

For n - 1 L, the sum over p is singular: 

n - 1 3 L .  
1 n-1  1 c = - + finite 

, = o p - L + E  E 
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The 1 / ~  term cancels the vanishing binomial coefficient and yields a contribution, 
which is { }2.  Clearly n - 1 = L just gives us the 5-function pole term 5(1+ E ) ,  which 
already went into the extra term (4.5). So we begin the sum over n at n = L+2 and 
the right-hand side of (4.6) becomes 

m 

{ l2 = n = 1 L+2 an l (n  - L)( ", E )  (:+finite) (4.7) 

which is easily seen to agree with (4.2). 
To extend these considerations to 5 functions constructed from eigenvalues A, 

which are polynomials of order N in the summation index m, one has the fundamental 
theorem of algebra: 

A, = A ( m  - b l ) .  . . (m - b N ) .  

Then 

" 1  1 A-," In A, = C A i s {  In A +  N In m - 2 y(  b; + , . , + b;)}.  
m m r = l  rm 

Setting s = -L there remains the evaluation of the sums 

both of which can be handled by techniques developed earlier in this paper. 
J' (s,  a )  and the Lerch function O(s, a, z) in (2.14) are two of the Dirichlet series 

associated with the Hurwitz 5 function L(s, a ) .  We have shown that both Dirichlet 
series can be evaluated by our method at the points s = -L where 5(s, a )  becomes the 
Bernouilli polynomial (2.2). While not a proof, this strongly indicates that many, if 
not all, Dirichlet series associated with L(s, a )  can be routinely evaluated by our method 
at s = -L, and that the same is true for more general J functions Z(s)  and their 
associated Dirichlet series D ( s )  at the points (1.7). 
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